A Stroll with Shannon to Next-Generation Plaza:
Large-Scale MIMOs, Single versus Multiple RF Chains and All That...

Presented by
Lajos Hanzo
with
SOUTHAMPTON WIRELESS
School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, UK.

http://www-mobile.ecs.soton.ac.uk

Acknowledgements
• Sincere thanks for the cordial invitation to all the Organizers
• The Southampton Wireless team, especially to my valued friends and colleagues Shinya Sugiura, Mohammad Kadir, Ping Yang, Kan Zheng, Chao Xu;
• The SM pioneers Ali Ghrayeb, Harald Haas, Prof. Jeganathan, Marco di Renzo, Rakshith Rajashekar, Prof. Hari et al.
• The Sponsors: EPSRC and the ERC Advanced Fellow Grant

• The History...

A Stroll with Shannon to Next-Generation Plaza...
A Stroll with Shannon to Next-Generation Plaza...

- **The Myth**: 'flawless tele-presence' with zero error for anyone, anywhere, anytime...

- **The Reality...**

Shannon’s Lesson # 1 - \(B \): Bandwidth

mm-Wave & Optical Wireless

\[
C = M \cdot B / N_f \cdot \log(1 + SINR)
\]

1. Shannon’s Lesson # 1 \(B \): Bandwidth - mm-Wave & Optical Wireless

2. Shannon’s Lesson # 2 \(N_f \): Frequency-reuse factor - Small Cells, HetNets, FFR & all that...

3. Shannon’s Lesson # 3 \(SINR \): No. of RX antennas (N) - Large-Scale MIMOs for RX-diversity, Beamforming & Interference Alignment

4. Shannon’s Lesson # 4 \(M \): No. of TX antennas - Large-scale MIMOs for BLAST and Spatial Modulation

Figure 1: Channel capacity upper bound of LTE-style near-instantaneously adaptive QAM (AQAM) and fixed modulation schemes over the dispersive TU Rayleigh Fading channel for BER=1% and BER=0.01%.
Figure 2: Pathloss versus carrier frequency, portraying the typical oxygen and water vapour absorption phenomena © Steele & Hanzo, 1999

But do you think Dr Shannon...?
Would the field of wireless have developed equally bandwidth-consciously, if...?

What if governments had not imposed frequency-licence fees...?

What about 'Green Radio'...?

What about the 'Tactile Internet'...?

Massive Optical-Wireless MIMOs & Li-Fi...

- http://www.vlcc.net/?ml_lang=en
- http://www.lificonsortium.org/index.html

Shannon’s Lesson # 2 - N_f:
Frequency-reuse factor

Small Cells, LiFi, FFR, HetNets & all that...
LS-MIMO Applications: Multilayer Sectorization

- Zheng, Zhao, Mei, Shao, Xiang & Hanzo: Survey of Large-Scale MIMO Systems, IEEE Communications Surveys & Tutorials, IEEE Xplore

Shannon’s Lesson # 3 - The SINR Depends on the Pathloss & Fading of Both the Signal & Interference

Type I MIMO: Space-Time Coded OFDM Improves the SINR
Spatial Corr. Degrades the G_2 STBC SINR

![Graph showing BER vs. SNR for different correlation coefficients](image)

So, Dr Shannon - which of the Four MIMOs is fit for Large-Scale MIMOs?

- Diversity - STBC, etc.
- Multiplexing - BLAST, etc.
- Beamforming
- Space Division Multiple Access

CSI Errors Degrade the SINR of G_2 STBC

![Graph showing BER vs. SNR for different CSI errors](image)

Shannon’s Lesson # 4 - M: No. of TX antennas

Capacity of MIMOs

$$C \approx \min(M; N)$$

Large-scale MIMOs and Spatial Modulation

Given your legacy Dr Shannon - we set out to conceive cooperative massive MIMO-aided unlicensed & optical wireless HetNets...

LS-MIMO Applications:
Adaptive Beamforming

• Zheng, Zhao, Mei, Shao, Xiang & Hanzo: Survey of Large-Scale MIMO Systems, IEEE Communications Surveys & Tutorials, IEEE Xplore

LS-MIMO Applications:
Large-scale Cooperation & Backhaul

• Zheng, Zhao, Mei, Shao, Xiang & Hanzo: Survey of Large-Scale MIMO Systems, IEEE Communications Surveys & Tutorials, IEEE Xplore
LS-MIMO Applications: Hot-Spot Coverage

- Zheng, Zhao, Mei, Shao, Xiang & Hanzo: Survey of Large-Scale MIMO Systems, IEEE Communications Surveys & Tutorials, IEEE Xplore

The Fifth MIMO: Spatial Modulation (SM) Requires Only a Single RF Chain

But Dr Shannon... Do You Believe Losing Transmit-Diversity in Exchange for Requiring Only a Single-RF Chain Is a Good Deal?

So What About Single vs. Multiple RF Chains...Dr Shannon...?

Linear Dispersion Coding (LDC) Circumvents the Diversity vs. Multiplexing Tradeoff

- Capacity comparison between V-BLAST, STBC, LDC, SM and STSK:
 - Both V-BLAST(2,2) and LDC(2,2,2,4) may achieve the same maximum attainable capacity of the MIMO system using $M = 2$ TAs and $N = 2$ RAs.
 - The SM(2,2)'s CCMC capacity is lower than that of V-BLAST(2,2) and LDC(2,2,2,4), followed by G2-STBC(N=2) and STSK(2,2,2,4).

- BER performance comparison between V-BLAST, STBC and LDC:
 - Both the diversity schemes of LDC(2,2,2,4) and G2-STBC(N=2) may outperform the multiplexing scheme of V-BLAST(2,2).
 - The MMSE receiver imposes substantial performance loss both to V-BLAST(2,2) and LDC(2,2,2,4).

• Linear Dispersion Codes Require Multiple RF Chains
 - LDC($MNTQ$), with arbitrary modulation schemes.
 - Q non-separable layers.
 - Optimization of χ.
 - A single Dispersion Character Matrix (DCM) χ.

• Diversity vs. Multiplexing Tradeoff
 - The same trends may be observed, when LDC is compared to STSK, because the LDC receiver may employ the V-BLAST detectors, while the STSK receiver may employ the SM detectors.

- The SM(2,2) detector exhibits a comparably low detection complexity to that of the linear MMSE aided V-BLAST(2,2) detector, which are both substantially lower than that of the ML V-BLAST(2,2) detector.
 - The performance difference between SM(2,2) and V-BLAST(2,2) is almost negligible compared to the performance loss imposed by employing MMSE detector for V-BLAST.

- The same trends may be observed, when LDC is compared to STSK, because the LDC receiver may employ the V-BLAST detectors, while the STSK receiver may employ the SM detectors.
In This Scenario Single-RF Spatial Modulation Is Capable of Matching the ML-Detected BLAST Performance at a Fraction of Its Complexity, BUT...

- SM is not faultless, because it fails to achieve the full MIMO capacity;
- This leaves room for its development into generalized SM, where several symbols per channel use would be transmitted;
- Regrettfully, then the inter-antenna interference would resurface...;

So, what are we to do Dr Shannon...?
A Stroll with Shannon Along ’Quantum Avenue’...?

- [Hanzo et al.] Wireless Myths, Realities and Futures, Proc. of the IEEE, 13th of May 2012, Centennial Issue, Xplore Open Access

- [Botsinis, Ng & Hanzo]: Quantum Search Algorithms, Quantum Wireless and a Low-Complexity Maximum Likelihood Iterative Quantum Multi-User Detector Design, IEEE Access, May 2013, Xplore Open Access